The Potential Influence of Forests and Climate Change on the Environmental Fates of Organic Compounds in Tropical Watersheds
Current Journal of Applied Science and Technology,
Page 41-54
DOI:
10.9734/cjast/2020/v39i1430699
Abstract
This exploratory review synthesizes current knowledge on the use, exposures and environmental fates of PBDEs, dioxins and dioxin-like chemicals, and current-use pesticides, as well as purports the potential for forests and climate change to affect their fates at the catchment scale in tropical regions. Organic compounds such as these are under global scrutiny because of their widespread distribution and potential for adverse health impacts. PBDEs and current-use pesticides are produced for their beneficial services as flame retardants and pest controls, respectively, whereas dioxins and furans are the by-products of combustion events involving many organic compounds. However, these chemicals distribute to various environmental media and are associated with adverse health effects, including neurotoxicity and carcinogenicity. Previous studies have shown that temperate and boreal forests influence the environmental fates of some organic chemicals by transferring them from the atmosphere to the soils, therefore potentially reducing atmospheric exposure. Changing climate variables, such as temperature change, are also expected to be important in the environmental distribution of organic contaminants. However, the effect of these factors, forests and climate change, on the environmental fates of organic pollutants in tropical watersheds have not been adequately examined. Knowledge of the fates and impacts of organic pollutants in tropical regions is critical for environmental management and policy development therein, and this review therefore explores the potential influences of forests and climate change on contaminant fates in tropical regions. Finally, the areas where more research is needed to assist in these endeavors are elucidated.
How to Cite
References
Kanan S, Samara F. Dioxins and furans: A review from chemical and environmental perspectives. Trends Environ Anal Chem. 2018;17:1-13. Available:https://doi.org/10.1016/j.teac.2017.12.001
Lohmann R, Breivik K, Dachs J, Muir D. Global fate of POPs: Current and future research directions. Environ Pollut. 2007; 150(1):150-65. Available:http://dx.doi.org/10.1016/j.envpol.2007.06.051
Nizzetto L, Butterfield D, Futter M, Lin Y, Allan I, Larssen T. Assessment of contaminant fate in catchments using a novel integrated hydrobiogeochemical-multimedia fate model. Sci Total Environ. 2016;544:553-63. Available:https://doi.org/10.1016/j.scitotenv.2015.11.087
Jones KC, de Voogt P. Persistent organic pollutants (POPs): State of the science. Environ Pollut. 1999;100(1–3):209-21.
Available:http://dx.doi.org/10.1016/S0269-7491(99)00098-6
Mackay D, McCarty LS, MacLeod M. On the validity of classifying chemicals for persistence, bioaccumulation, toxicity, and potential for long‐range transport. Environmental Toxicology and Chemistry: An International Journal. 2001;20(7):1491-98.
Beyer A, Mackay D, Matthies M, Wania F, Webster E. Assessing long-range transport potential of persistent organic pollutants. Environ Sci Technol. 2000;34(4):699-703.
Walcott KC, Erwin KN, Levin ED. The toxicology of climate change: Environmental contaminants in a warming world. Environ Int. 2009;35:971-86.
Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, et al. The toxicology of climate change: Environmental contaminants in a warming world. Environ Int. 2009;35(6):971-86.
Available:https://doi.org/10.1016/j.envint.2009.02.006
Nizzetto L, Perlinger JA. Climatic, Biological and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between FOREST canopies and the atmosphere. Environ Sci Technol. 2012;46(5):2699-707.
DOI: 10.1021/es2036527
Wania F, McLachlan MS. Estimating the Influence of Forests on the Overall Fate of Semivolatile Organic Compounds Using a Multimedia Fate Model. Environ Sci Technol. 2000;35(3):582-90.
DOI: 10.1021/es0011919
Kallenborn R, Halsall C, Dellong M, Carlsson P. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. J Environ Monit. 2012; 14(11):2854-69.
DOI: 10.1039/C2EM30519D
Fiedler H. Dioxins and furans (PCDD/PCDF). Persistent Organic Pollutants: Springer. 2003;123-201.
Sterling TD, Arundel AV. Health effects of phenoxy herbicides: A review. Scand J Work Environ Health. 1986;12(3):161-73.
DOI:10.2307/40965305
Dabrowski JM, Shadung JM, Wepener V. Prioritizing agricultural pesticides used in South Africa based on their environmental mobility and potential human health effects. Environ Int. 2014;62:31-40.
Available:https://doi.org/10.1016/j.envint.2013.10.001
Linares V, Bellés M, Domingo JL. Human exposure to PBDE and critical evaluation of health hazards. Arch Toxicol. 2015;89 (3):335-56.
DOI: 10.1007/s00204-015-1457-1
Rahman F, Langford KH, Scrimshaw MD, Lester JN. Polybrominated diphenyl ether (PBDE) flame retardants. Sci Total Environ. 2001;275(1):1-17.
Gibson EA, Siegel EL, Eniola F, Herbstman JB, Factor-Litvak P. Effects of polybrominated diphenyl ethers on child cognitive, behavioral and motor development. Int J Environ Res Public Health. 2018;15(8):1636.
DOI: 10.3390/ijerph15081636
Costa LG, Giordano G, Tagliaferri S, Caglieri A. Polybrominated diphenyl ether (PBDE) flame retardants: Environmental contamination, human body burden and potentialadverse health effects. Acta Bio Medica Atenei Parmensis. 2009;79(3):172-83.
EPA U, editor Recommended toxicity equivalence factors (TEFs) for human health risk assessments of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and dioxin-like compounds: Risk Assessment Forum Washington, DC; 2010.
Allen JG, Gale S, Zoeller RT, Spengler JD, Birnbaum L, McNeely E. PBDE flame retardants, thyroid disease, and menopausal status in U.S. women. Environ Health. 2016;15(1):60-60.
DOI: 10.1186/s12940-016-0141-0
Vonderheide AP, Mueller KE, Meija J, Welsh GL. Polybrominated diphenyl ethers: causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Sci Total Environ. 2008; 400(1):425-36.
Fromme H, Hilger B, Kopp E, Miserok M, Völkel W. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and “novel” brominated flame retardants in house dust in Germany. Environ Int. 2014;64:61-68.
Available:https://doi.org/10.1016/j.envint.2013.11.017
Srogi K. Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: A review. Environ Chem Lett. 2008;6(1):1- 28.
Schecter A, Birnbaum L, Ryan JJ, Constable JD. Dioxins: an overview. Environ Res. 2006;101(3):419-28.
DOI: 10.1016/j.envres.2005.12.003
Mukherjee A, Debnath B, Ghosh SK. A review on technologies of removal of dioxins and furans from incinerator flue gas. Procedia Environ Sci. 2016;35:528-40.
Lohmann R, Jones KC. Dioxins and furans in air and deposition: A review of levels, behaviour and processes. Sci Total Environ. 1998;219(1):53-81.
Ueno D, Watanabe M, Subramanian A, Tanaka H, Fillmann G, Lam PKS, et al. Global pollution monitoring of polychlorina-ted dibenzo-p-dioxins (PCDDs), furans (PCDFs) and coplanar polychlorinated biphenyls (coplanar PCBs) using skipjack tuna as bioindicator. Environ Pollut. 2005; 136(2):303-13.
Available:https://doi.org/10.1016/j.envpol.2004.12.036
Consonni D, Sindaco R, Bertazzi PA. Blood levels of dioxins, furans, dioxin-like PCBs, and TEQs in general populations: A review, 1989–2010. Environ Int. 2012;44: 151-62. Available:https://doi.org/10.1016/j.envint.2012.01.004
Frederiksen M, Vorkamp K, Thomsen M, Knudsen LE. Human internal and external exposure to PBDEs–a review of levels and sources. Int J Hyg Environ Health. 2009; 212(2):109-34.
McDonald TA. A perspective on the potential health risks of PBDEs. Chemosphere. 2002;46(5):745-55.
Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicol Sci. 2006; 93(2):223-41.
DOI: 10.1093/toxsci/kfl055
Kim K-H, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Sci Total Environ. 2017; 575:525-35.
Available:https://doi.org/10.1016/j.scitotenv.2016.09.009
Dehn PF, Allen-Mocherie S, Karek J, Thenappan A. Organochlorine insecticides: impacts on human HepG2 cytochrome P4501A, 2B activities and glutathione levels. Toxicol in vitro. 2005;19(2):261- 73.
DOI: 10.1016/j.tiv.2004.10.002
Yao Y, Tuduri L, Harner T, Blanchard P, Waite D, Poissant L, et al. Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions. Atmos Environ. 2006;40(23):4339-51.
Available:10.1016/j.atmosenv.2006.03. 039
Saillenfait A-M, Ndiaye D, Sabaté J-P. Pyrethroids: Exposure and health effects – An update. Int J Hyg Environ Health. 2015; 218(3):281-92. Available:https://doi.org/10.1016/j.ijheh.2015.01.002
Muñoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. Neurotoxicology. 2013;39:158-68.
Available:10.1016/j.neuro.2013.09.003
Costa LG. Current issues in organophosphate toxicology. Clin Chim Acta. 2006;366(1-2):1-13.
Fukuto TR. Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect. 1990;87:245-54.
Morais S, Dias E, Pereira M. Carbamates: Human exposure and health effects. The impact of pesticides. 2012;21-38.
Kudsk P, Streibig JC. Herbicides – A two-edged sword*. Weed Res. 2003;43(2):90-102.
DOI:10.1046/j.1365-3180.2003.00328.x
Gasnier C, Dumont C, Benachour N, Clair E, Chagnon M-C, Séralini G-E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262(3):184-91.
Available:http://dx.doi.org/10.1016/j.tox.2009.06.006
Van Bruggen A, He M, Shin K, Mai V, Jeong K, Finckh M, et al. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. 2018;616: 255-68.
Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ Health. 2016;15(1):1-13.
Jaga K, Dharmani C. Sources of exposure to and public health implications of organophosphate pesticides. Rev Panam Salud Publica. 2003;14(3):171-85.
Talbot AR, Shiaw MH, Huang JS, Yang SF, Goo TS, Wang SH, et al. Acute Poisoning with a Glyphosate-Surfactant Herbicide ('Roundup'): A Review of 93 Cases. Hum Exp Toxicol. 1991;10(1):1-8.
DOI: 10.1177/096032719101000101
Bounoua L, Collatz G, Los S, Sellers P, Dazlich D, Tucker C, et al. Sensitivity of climate to changes in NDVI. J Clim. 2000; 13(13):2277-92.
Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P. Green surprise? How terrestrial ecosystems could affect earth's climate. Front Ecol Environ. 2003;1(1):38-44.
DOI: 10.2307/3867963
Costa M, Bonell M, Bruijnzeel L, editors. Large-scale hydrological impacts of tropical forest conversion. The joint UNESCO International Hydrological Programme (IHP)-International Union of Forestry Research Organizations (IUFRO) symposium and workshop, Forest-water-people in the humid tropics: past, present and future hydrological research for integrated land and water management, Universiti Kebangsaan Malaysia, 30 July-4 August 2000.; 2004: Cambridge University Press; 2004.
Costa MH, Foley JA. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Clim. 2000;13(1):18-34.
DOI:10.1175/1520-0442(2000)013<0018:ceodad>2.0.co;2
Schiedek D, Sundelin B, Readman JW, Macdonald RW. Interactions between climate change and contaminants. Mar Pollut Bull. 2007;54(12):1845-56.
Available:http://dx.doi.org/10.1016/j.marpolbul.2007.09.020
Holvoet KMA, Seuntjens P, Vanrolleghem PA. Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecol Modell. 2007;209(1):53-64.
DOI: 10.1016/j.ecolmodel.2007.07.030
Nizzetto L, Pastore C, Liu X, Camporini P, Stroppiana D, Herbert B, et al. Accumulation Parameters and Seasonal Trends for PCBs in Temperate and Boreal Forest Plant Species. Environ Sci Technol. 2008;42(16):5911-16. DOI:10.1021/es800217m
Komprda J, Komprdová K, Sáňka M, Možný M, Nizzetto L. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from Background Soils. Environ Sci Technol. 2013;47(13):7052-59.
DOI: 10.1021/es3048784
Garmouma M, Teil MJ, Blanchard M, Chevreuil M. Spatial and temporal variations of herbicide (triazines and phenylureas) concentrations in the catchment basin of the Marne river (France). Sci Total Environ. 1998;224(1–3):93-107.
DOI:10.1016/s0048-9697(98)00326-x
McLachlan MS, Horstmann M. Forests as filters of airborne organic pollutants: A model. Environ Sci Technol. 1998;32(3): 413-20.
DOI: 10.1021/es970592u
Priemer DA, Diamond ML. Application of the multimedia urban model to compare the fate of SOCs in an urban and forested watershed. Environ Sci Technol. 2002; 36(5):1004-13.
DOI: 10.1021/es001397+
Horstmann M, McLachlan MS. Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos Environ. 1998;32(10):1799-809.
Available:http://dx.doi.org/10.1016/S1352-2310(97)00477-9
Su Y, Wania F. Does the Forest Filter Effect Prevent Semivolatile Organic Compounds from Reaching the Arctic? Environ Sci Technol. 2005;39(18):7185-93.
DOI: 10.1021/es0481979
Nizzetto L, Stroppiana D, Brivio PA, Boschetti M, Di Guardo A. Tracing the fate of PCBs in forest ecosystems. J Environ Monit. 2007;9(6):542-49.
Barrett KSC, Jaward FM, Stuart AL. Forest filter effect for polybrominated diphenyl ethers in a tropical watershed. J Environ Manage. 2019;248:109279.
Available:https://doi.org/10.1016/j.jenvman.2019.109279
Wöhrnschimmel H, MacLeod M, Hungerbuhler K. Emissions, Fate and transport of persistent organic pollutants to the arctic in a changing global climate. Environ Sci Technol. 2013;47(5):2323-30.
DOI: 10.1021/es304646n
Zacharia JT. Identity, physical and chemical properties of pesticides. Pesticides in the Modern World-trends in Pesticides Analysis. 2011:1-18.
Chomitz KM, Kumari K. The domestic benefits of tropical forests: A critical review. World Bank Res Obs. 1998;13(1): 13-35.
Kalácska M, Sánchez-Azofeifa GA, Rivard B, Calvo-Alvarado JC, Journet ARP, Arroyo-Mora JP, et al. Leaf area index measurements in a tropical moist forest: A case study from Costa Rica. Remote Sens Environ. 2004;91(2):134-52.
Available:http://dx.doi.org/10.1016/j.rse.2004.02.011
Bennett DH, Scheringer M, McKone TE, Hungerbühler K. Predicting long-range transport: A systematic evaluation of two multimedia transport models. Environ Sci Technol. 2001;35(6): 1181-89.
DOI: 10.1021/es001278u
Diamond ML, Priemer DA, Law NL. Developing a multimedia model of chemical dynamics in an urban area. Chemosphere. 2001;44(7):1655-67.
Available:http://dx.doi.org/10.1016/S0045-6535(00)00509-9
Fenner K, Scheringer M, Hungerbühler K. Persistence of parent compounds and transformation products in a level IV multimedia model. Environ Sci Technol. 2000;34(17):3809-17.
DOI: 10.1021/es0000347
Fenner K, Scheringer M, MacLeod M, Matthies M, McKone T, Stroebe M, et al. Comparing estimates of persistence and long-range transport potential among multimedia models. Environ Sci Technol. 2005;39(7):1932-42.
DOI: 10.1021/es048917b
Leip A, Lammel G. Indicators for persistence and long-range transport potential as derived from multicompart-ment chemistry–transport modelling. Environ Pollut. 2004;128(1–2):205-21.
DOI: 10.1016/j.envpol.2003.08.035
Gouin T, Armitage JM, Cousins IT, Muir DCG, Ng CA, Reid L, et al. Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environ Toxicol Chem. 2013;32(1):20-31.
DOI: 10.1002/etc.2044
Scheringer M, Jones KC, Matthies M, Simonich S, Van De Meent D. Multimedia partitioning, overall persistence, and long‐range transport potential in the context of POPs and PBT chemical assessments. Integrated Environmental Assessment and Management: An International Journal. 2009;5(4):557-76.
Scheringer M. Persistence and spatial range as endpoints of an exposure-based assessment of organic chemicals. Environ Sci Technol. 1996;30(5):1652-59.
Bennett DH, McKone TE, Matthies M, Kastenberg WE. General formulation of characteristic travel distance for semivolatile organic chemicals in a multimedia environment. Environ Sci Technol. 1998;32(24):4023-30.
DOI: 10.1021/es980328g
Scheringer M. Long‐range transport of organic chemicals in the environment. Environmental Toxicology and Chemistry: An International Journal. 2009;28(4):677-90.
Webster E, Mackay D, Wania F. Evaluating environmental persistence. Environmental Toxicology and Chemistry: An International Journal. 1998;17(11): 2148-58.
Wegmann F, Cavin L, MacLeod M, Scheringer M, Hungerbühler K. The OECD software tool for screening chemicals for persistence and long-range transport potential. Environmental Modelling & Software. 2009;24(2):228-37.
DOI: 10.1016/j.envsoft.2008.06.014
Matthies M, Klasmeier Jr, Beyer A, Ehling C. Assessing persistence and long-range transport potential of current-use pesticides. Environ Sci Technol. 2009;43 (24):9223-29.
DOI: 10.1021/es900773u
Granger OE. Caribbean climates. Prog Phys Geogr. 1985;9(1):16-43.
DOI: 10.1177/030913338500900102
Lamon L, von Waldow H, MacLeod M, Scheringer M, Marcomini A, Hungerbühler K. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario. Environ Sci Technol. 2009;43(15):5818-24.
Ma J, Hung H, Tian C, Kallenborn R. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat Clim Chang. 2011;1(5):255-60.
Paul AG, Hammen VC, Hickler T, Karlson UG, Jones KC, Sweetman AJ. Potential implications of future climate and land-cover changes for the fate and distribution of persistent organic pollutants in Europe. Global Ecol Biogeogr. 2012;21(1):64-74.
DOI: 10.1111/j.1466-8238.2010.00547.x
Hansen KM, Christensen JH, Geels C, Silver JD, Brandt J. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic. Atmos Chem Phys. 2015;15:6549.
Bloomfield JP, Williams RJ, Gooddy DC, Cape JN, Guha P. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Sci Total Environ. 2006; 369(1–3):163-77. Available:http://dx.doi.org/10.1016/j.scitotenv.2006.05.019
Steffens K, Larsbo M, Moeys J, Jarvis NJ, Kjellström E, Lewan E, editors. Assessing pesticide leaching under climate change: The role of climate input uncertainty. EGU General Assembly Conference Abstracts; 2013.
Suzuki N, Murasawa K, Sakurai T, Nansai K, Matsuhashi K, Moriguchi Y, et al. Geo-referenced multimedia environmental fate model (G-CIEMS): Model formulation and comparison to the generic model and monitoring approaches. Environ Sci Technol. 2004;38(21):5682-93.
Hollander A, Huijbregts M, Ragas A, Van de Meent D. BasinBox: A generic multimedia fate model for predicting the fate of chemicals in river catchments. Living Rivers: Trends and Challenges in Science and Management: Springer. 2006; 21-38.
Zhu Y, Price OR, Tao S, Jones KC, Sweetman AJ. A new multimedia contaminant fate model for China: How important are environmental parameters in influencing chemical persistence and long-range transport potential? Environ Int. 2014;69:18-27. Availble:https://doi.org/10.1016/j.envint.2014.03.020
Luo Y, Gao Q, Yang X. Dynamic modeling of chemical fate and transport in multimedia environments at watershed scale—I: Theoretical considerations and model implementation. J Environ Manage. 2007;83(1):44-55.
DOI: 10.1016/j.jenvman.2006.01.017
Boorman DB. LOIS in-stream water quality modelling. Part 1. Catchments and methods. Sci Total Environ. 2003;314-316: 379-95. Available:https://doi.org/10.1016/S0048-9697(03)00064-0
Schowanek D, Fox K, Holt M, Schroeder F, Koch V, Cassani G, et al. GREAT- ER: A new tool for management and risk assessment of chemicals in river basins Contribution to GREAT-ER No. 10. Water Sci Technol. 2001;43(2):179- 85.
-
Abstract View: 757 times
PDF Download: 256 times