Effect of Weather Parameters on Yield and Yield Attributes under Aerobic Rice Cultivation during Navarai Season

S. Pazhanisamy1*, Al. Narayanan1, V. Sridevi1, Abhinandan Singh2 and Amit Kumar Singh2

1Department of Agronomy, Pandit Jawaharlal Nehru College of Agriculture and Research Institute, Karaikal 609 603, Puducherry, India.
2Department of Agronomy, BUA&T, Banda, U.P. 210001, India.

Authors’ contributions

This research work was carried out in collaboration among all authors. Authors SP and AN conceptualized, designed and carried out this research. Authors SP and VS recorded the data and performed statistical analysis. Authors SP, VS, AN and AS wrote the protocol and wrote the first original draft of the manuscript. Authors SP, VS and AS managed the literature searches. Author AKS reviewed and edited the manuscript. Authors AN and AKS supervised the whole study. All authors have read and approved the final manuscript for publishing in the journal.

Article Information

DOI: 10.9734/CJAST/2020/v39i730582

ABSTRACT

A field experiment was conducted during Navarai season of 2017 at research farm of Agronomy, Pandit Jawaharlal Nehru College of Agriculture and Research Institute, Karaikal, Puducherry, India on investigate the performance of seed priming practices at different dates of sowing (February 6th, February 13th and February 20th) under aerobic condition. The results indicated that among the dates of sowing, crop sown on 6th February produced higher grain yield of 2591 kg ha-1. Correlation studies revealed that the direct weather parameters such as maximum and minimum temperature, rainfall, morning and evening relative humidity, total evaporation were significantly contributing to the rice grain yield and DMP. Similarly, the derived weather parameters viz., mean Diurnal Variation Temperature (DVT) total Growing Degree Day (GDD), total Helio Thermal Units (HTU),
1. INTRODUCTION

Rice is a unique crop among the major food crops by virtue of its extent and adaptability to wider range of climatic, edaphic and cultural conditions. About 90 per cent of the rice production takes place in the tropical and subtropical Asia, where more than 60 per cent of the world population exists. It is also the major staple food for more than half of the World’s population [1]. Rice consumes 40 per cent of all fresh water used in Asia. The productivity of Asian irrigated rice system is increasingly threatened by water scarcity. Tuong and Bouman [2] estimated that by 2025, two million hectares of Asian irrigated dry season rice and 13 million hectares of its irrigated wet season rice may experience “Physical water scarcity”. Therefore, aerobic rice technology is one way to reduce water scarcity instead of the puddled transplanted rice [3]. The term aerobic rice coined by the International Rice Research Institute (IRRI), it has been developed instead of the puddled transplanted rice [4]. Aerobic rice refers to growing rice in condition of non-flooded and non-puddled low land soil with supplemental irrigation. Aerobic rice recorded substantial water savings by minimizing seepage, percolation and greatly reduced evaporation [5]. Aerobic rice generally requires 30 to 50 per cent less water even though it resulted in a yield penalty of 20 to 30 per cent [6]. Rice production in the tropics is sensitive to weather which affects the crop in various ways during different stages of its growth [7] and certain stages are more sensitive to weather than others [8]. The potential productivity of the aerobic rice could be positively changed by altering the sowing window in tune with favorable weather conditions [9]. Hence, the present investigation was made in aerobic rice towards establishing the ways and mean stomitigate the unfavorable weather conditions during Navarai season at Karaikal.

2. METHODOLOGY

A field experiment was conducted at Agronomy farm (Eastern farm) of Department of Agronomy at Pandit Jawaharlal Nehru College of Agriculture and Research Institute, Karaikal, Puducherry during Navarai from February to June, 2017 to evaluate the influence of weather factors and seed priming practices on rice productivity under aerobic condition at Karaikal. It is situated at 10° 55 N latitude and 79° 49 E longitude with an altitude of 4 meters above Mean Sea Level (MSL). Karaikal enjoys a tropical climate and receives a normal rainfall of 1397 mm in a year with an average maximum and minimum temperatures of 35.4 and 25.6°C respectively. The normal relative humidity is 87.9 and 59.9 per cent. The soil of the experimental site was clayey having normal i.e., pH 7.1, EC 0.1 dSm⁻¹, organic carbon 0.60%, low available N 191.29 kg ha⁻¹, high available P 163.00 kg ha⁻¹ and normal K 279.6 kg ha⁻¹. The experiment was laid out in the Randomized Block Design (Factorial) and the treatments were replicated thrice and the treatments combination consist of three dates of sowing at weekly intervals viz., 6th February (S₁), 13th February (S₂), and 20th February (S₃) with five seed priming practice viz., P₁: Water P₂: KCl (1%) P₃: Moringa leaf extract (2%) P₄: Pungam leaf extract (1%) P₅: Fresh cow dung solution (5%). The selection of date of sowing based on traditional cropping system practices in the deltaic region of Karaikal (Rice-Rice-Rice cropping system). Rice variety PMK (R) 3 seeds were direct sown in line manually with 20 X 10 cm spacing in the well prepared field. Irrigation was immediately given after sowing. Later, the number of lifesaving irrigation was given in equal manner to respective dates of sowing when, hair line cracks were formed. Recommended fertilizer (150:50:50 NPK) doses was applied in splits (Phosphorus as basal, nitrogen and potassium at 15 DAS, tillering phase (35 DAS), panicle initiation (55 DAS) and flowering phase (75 DAS) equally). Additionally, ZnSO₄ was applied @ 25 kg ha⁻¹ at tillering phase (35 DAS) and panicle initiation phase (55 DAS). Biometric observations were recorded as per the guidelines of All India Coordinated Rice Improvement Project (AICRIP), Hyderabad. In each plot, five hills were selected and tagged at random in the net plot area for recording the biometric observations at various stages of crop development.

Keywords: Aerobic rice; direct weather parameters; derived weather parameter; yield and yield attributes.
Table 1. Effect of dates of sowing on yield attributes

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Panicleshill$^{-1}$</th>
<th>Panicle length (cm)</th>
<th>Panicle weight (g)</th>
<th>Number of spikelets panicle$^{-1}$</th>
<th>Number of filled grainspanicle$^{-1}$</th>
<th>Grain filling percentage</th>
<th>Test weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dates of sowing (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_1: 6th February</td>
<td>9.4</td>
<td>27.5</td>
<td>3.6</td>
<td>185.9</td>
<td>139.5</td>
<td>74.1</td>
<td>22.8</td>
</tr>
<tr>
<td>S_2: 13th February</td>
<td>8.7</td>
<td>26.7</td>
<td>3.3</td>
<td>169.1</td>
<td>120.8</td>
<td>73.1</td>
<td>22.4</td>
</tr>
<tr>
<td>S_3: 20th February</td>
<td>8.6</td>
<td>26.4</td>
<td>2.4</td>
<td>166.0</td>
<td>112.7</td>
<td>66.8</td>
<td>21.9</td>
</tr>
<tr>
<td>SEM±</td>
<td>0.31</td>
<td>0.26</td>
<td>0.06</td>
<td>3.92</td>
<td>4.39</td>
<td>2.36</td>
<td>0.19</td>
</tr>
<tr>
<td>CD (p= 0.05)</td>
<td>0.63</td>
<td>0.53</td>
<td>0.12</td>
<td>8.04</td>
<td>8.99</td>
<td>4.83</td>
<td>0.38</td>
</tr>
<tr>
<td>Seed Priming (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_1: Water</td>
<td>8.1</td>
<td>26.2</td>
<td>2.8</td>
<td>165.8</td>
<td>115.4</td>
<td>68.0</td>
<td>22.2</td>
</tr>
<tr>
<td>P_2: 1% KCl</td>
<td>8.7</td>
<td>26.7</td>
<td>3.0</td>
<td>171.2</td>
<td>118.4</td>
<td>70.3</td>
<td>22.5</td>
</tr>
<tr>
<td>P_3: 2% Moringa leaf extract</td>
<td>9.3</td>
<td>27.6</td>
<td>3.3</td>
<td>179.6</td>
<td>134.8</td>
<td>74.5</td>
<td>22.6</td>
</tr>
<tr>
<td>P_4: 1% Pungam leaf extract</td>
<td>9.1</td>
<td>26.4</td>
<td>3.1</td>
<td>176.3</td>
<td>125.4</td>
<td>70.8</td>
<td>22.2</td>
</tr>
<tr>
<td>P_5: 5% Cow dung slurry</td>
<td>9.2</td>
<td>27.5</td>
<td>3.2</td>
<td>175.6</td>
<td>127.6</td>
<td>73.0</td>
<td>22.4</td>
</tr>
<tr>
<td>SEM±</td>
<td>0.40</td>
<td>0.34</td>
<td>0.08</td>
<td>5.06</td>
<td>5.67</td>
<td>3.04</td>
<td>0.19</td>
</tr>
<tr>
<td>CD (p= 0.05)</td>
<td>0.81</td>
<td>0.69</td>
<td>0.17</td>
<td>NS</td>
<td>11.61</td>
<td>NS</td>
<td>0.38</td>
</tr>
<tr>
<td>Interaction (SXP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM±</td>
<td>0.69</td>
<td>0.58</td>
<td>0.14</td>
<td>8.78</td>
<td>9.81</td>
<td>5.27</td>
<td>0.42</td>
</tr>
<tr>
<td>CD (p= 0.05)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.86</td>
</tr>
</tbody>
</table>
growth phases viz., vegetative (30 DAS), reproductive (60 DAS), maturity phase (90 DAS) and the yield attributes were recorded at the time of harvest.

Meteorological data were obtained from the meteorological observatory of PAJANCOA&Rl, Karaikal for various phenophases viz., seedling phase, vegetative, reproductive and maturity phases of the respective treatments to study their influence on aerobic rice.

The Agro-meteorological indices like mean Diurnal Variation Temperature (DVT) total Growing Degree Day (GDD), total Helio Thermal Units (HTU), total Photo Thermal Units (PTU) and total Heat Unit Efficiency (HUE) was calculated using the respective formulas.

3. RESULTS AND DISCUSSION

3.1 Effect of Weather Parameters on Yield Attributes

The dates of sowing revealed that, earlier crop sown at 6th February had comparatively higher values for various yield attributes like number of panicles hill$^{-1}$, panicle length and panicle weight than the crop sown in later dates i.e. 13th February and 20th February. Similar results were obtained for number of spikelets panicle$^{-1}$, number of filled grains panicle$^{-1}$ and grain filling percentage (Table 1). The possible reason for yield attributes influenced by early sowing may be due to relatively higher solar radiation during the cropping period with low temperature

<table>
<thead>
<tr>
<th>Seed priming and phenol phases</th>
<th>Dates of sowing (S)</th>
<th>S$_1$</th>
<th>S$_2$</th>
<th>S$_3$</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priming with water (P$_1$)</td>
<td>Seedling phase</td>
<td>30.6</td>
<td>31.0</td>
<td>31.8</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>Vegetative phase</td>
<td>32.4</td>
<td>32.7</td>
<td>33.2</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Reproductive phase</td>
<td>35.7</td>
<td>36.7</td>
<td>37.0</td>
<td>36.8</td>
</tr>
<tr>
<td></td>
<td>Maturity phase</td>
<td>37.8</td>
<td>38.1</td>
<td>38.8</td>
<td>38.2</td>
</tr>
<tr>
<td></td>
<td>Full lifespan</td>
<td>34.5</td>
<td>35.1</td>
<td>35.7</td>
<td>35.1</td>
</tr>
<tr>
<td>Priming with one percent KCl(P$_2$)</td>
<td>Seedling phase</td>
<td>30.6</td>
<td>30.9</td>
<td>31.8</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>Vegetative phase</td>
<td>32.4</td>
<td>32.7</td>
<td>33.3</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Reproductive phase</td>
<td>35.9</td>
<td>36.2</td>
<td>36.9</td>
<td>36.3</td>
</tr>
<tr>
<td></td>
<td>Maturity phase</td>
<td>37.8</td>
<td>37.9</td>
<td>38.7</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>Full lifespan</td>
<td>34.5</td>
<td>35.0</td>
<td>35.6</td>
<td>35.0</td>
</tr>
<tr>
<td>Priming with two percent moringa leaf extract(P$_3$)</td>
<td>Seedling phase</td>
<td>30.6</td>
<td>30.8</td>
<td>31.8</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>Vegetative phase</td>
<td>32.3</td>
<td>32.7</td>
<td>33.1</td>
<td>32.7</td>
</tr>
<tr>
<td></td>
<td>Reproductive phase</td>
<td>35.2</td>
<td>36.3</td>
<td>36.8</td>
<td>36.1</td>
</tr>
<tr>
<td></td>
<td>Maturity phase</td>
<td>37.8</td>
<td>37.9</td>
<td>38.8</td>
<td>38.2</td>
</tr>
<tr>
<td></td>
<td>Full life span</td>
<td>34.5</td>
<td>35.0</td>
<td>35.6</td>
<td>35.0</td>
</tr>
<tr>
<td>Priming with one percent pungam leaf extract (P$_4$)</td>
<td>Seedling phase</td>
<td>30.6</td>
<td>30.9</td>
<td>31.8</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td>Vegetative phase</td>
<td>32.3</td>
<td>32.7</td>
<td>33.3</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Reproductive phase</td>
<td>35.8</td>
<td>36.6</td>
<td>37.0</td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>Maturity phase</td>
<td>37.8</td>
<td>38.0</td>
<td>38.8</td>
<td>38.2</td>
</tr>
<tr>
<td></td>
<td>Full lifespan</td>
<td>34.5</td>
<td>35.0</td>
<td>35.6</td>
<td>35.1</td>
</tr>
<tr>
<td>Priming with five percent cow dung slurry(P$_5$)</td>
<td>Seedling phase</td>
<td>30.6</td>
<td>31.0</td>
<td>31.8</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>Vegetative phase</td>
<td>32.3</td>
<td>32.7</td>
<td>33.2</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Reproductive phase</td>
<td>35.5</td>
<td>36.7</td>
<td>36.9</td>
<td>36.4</td>
</tr>
<tr>
<td></td>
<td>Maturity phase</td>
<td>37.8</td>
<td>38.3</td>
<td>38.9</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td>Full lifespan</td>
<td>34.5</td>
<td>35.1</td>
<td>35.7</td>
<td>35.1</td>
</tr>
</tbody>
</table>

S$_1$: 6th February, S$_2$: 13th February, S$_3$: 20th February
success of aerobic rice mainly depends on time of sowing. The potential yield of rice crop can be achieved only by growing at its appropriate sowing window in a cropping season (Singh et al., 1990). Haridassan [12] opined that the grain yield of rice increase with increasing trend of radiation and lesser temperature during reproductive phase (Table 3). Low diurnal variation (Table 4) produced increased fertility coefficient in hybrid rice [13]. Low temperature (Table 3) increases the grain yield by delaying the grain maturation and extending the grain filling and high temperature reduces grain yield by reducing the percentage of ripened grains [14]. Also, Jana et al. [15] reported that higher temperature during the flowering period results in poor seed setting and causes spikelet sterility reducing the yield. Later sowing had high temperature when compared to its earlier sowing which may have resulted in the reduced grain yield by increasing the spikelet sterility.

Similar trend was visualized for the straw yield (8882.2 kg ha\(^{-1}\)) and harvest index (23.2). Earlier sowing on 6\(^{th}\) February was the best sowing window for all priming practices and when sowing window was delayed, the poor performance of aerobic rice was visualized (Table 3). High light intensity may have supported in increased straw yield with more photosynthesis. Greater demand for photosynthates occur with low light intensity thereby reducing photosynthesis followed by DMP and finally reduces straw yield [16].

Table 3. Effect of dates of sowing and seed priming on test weight (g), grain yield (kg h\(^{-1}\)), straw yield (kg ha\(^{-1}\)) and harvest index (%) of aerobic rice

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Grain yield (kg ha(^{-1}))</th>
<th>Straw yield (kg ha(^{-1}))</th>
<th>Harvest Index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dates of sowing(S)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S(_1): 6(^{th}) February</td>
<td>2591.5</td>
<td>8862.2</td>
<td>23.2</td>
</tr>
<tr>
<td>S(_2): 13(^{th}) February</td>
<td>1977.7</td>
<td>8649.9</td>
<td>18.9</td>
</tr>
<tr>
<td>S(_3): 20(^{th}) February</td>
<td>1236.8</td>
<td>7986.7</td>
<td>13.5</td>
</tr>
<tr>
<td>SEm±</td>
<td>52.32</td>
<td>162.20</td>
<td>0.57</td>
</tr>
<tr>
<td>CD (p= 0.05)</td>
<td>107.18</td>
<td>332.26</td>
<td>1.17</td>
</tr>
<tr>
<td>Seed Priming (P)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(_1): Water</td>
<td>1725.1</td>
<td>8309.2</td>
<td>17.1</td>
</tr>
<tr>
<td>P(_2): 1% KCl</td>
<td>1837.7</td>
<td>8235.4</td>
<td>17.8</td>
</tr>
<tr>
<td>P(_3): 2% Moringa leaf extract</td>
<td>2256.5</td>
<td>8963.9</td>
<td>20.0</td>
</tr>
<tr>
<td>P(_4): 1% Pungam leaf extract</td>
<td>1912.3</td>
<td>8380.4</td>
<td>19.2</td>
</tr>
<tr>
<td>P(_5): 5% Cow dung slurry</td>
<td>1945.1</td>
<td>8642.3</td>
<td>18.6</td>
</tr>
<tr>
<td>SEm±</td>
<td>52.32</td>
<td>162.20</td>
<td>0.57</td>
</tr>
<tr>
<td>CD (p= 0.05)</td>
<td>107.18</td>
<td>332.26</td>
<td>1.17</td>
</tr>
<tr>
<td>Interaction (SXP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEm±</td>
<td>116.99</td>
<td>362.69</td>
<td>1.27</td>
</tr>
<tr>
<td>CD (p= 0.05)</td>
<td>239.65</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>
Table 4. Mean Diurnal variation temperature (DVT) (degrees) prevailed at different phases of aerobic rice (Data statistically not analyzed)

<table>
<thead>
<tr>
<th>Seed priming and phenological phases</th>
<th>Dates of sowing (S)</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priming with water (P_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seedling phase</td>
<td>9.2</td>
<td>9.4</td>
<td>8.7</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>Vegetative phase</td>
<td>8.2</td>
<td>8.7</td>
<td>9.0</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>Reproductive phase</td>
<td>9.7</td>
<td>10.1</td>
<td>9.9</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Maturity phase</td>
<td>10.1</td>
<td>10.2</td>
<td>11.0</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Full lifespan</td>
<td>37.2</td>
<td>38.5</td>
<td>38.6</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>Priming with one percent KCl(P_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seedling phase</td>
<td>9.2</td>
<td>9.4</td>
<td>8.7</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Vegetative phase</td>
<td>8.2</td>
<td>8.6</td>
<td>9.1</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Reproductive phase</td>
<td>9.8</td>
<td>9.9</td>
<td>10.1</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Maturity phase</td>
<td>10.1</td>
<td>10.2</td>
<td>10.8</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>Full lifespan</td>
<td>37.3</td>
<td>38.2</td>
<td>38.8</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>Priming with two percent moringa leaf extract(P_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seedling phase</td>
<td>9.4</td>
<td>9.5</td>
<td>8.8</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>Vegetative phase</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Reproductive phase</td>
<td>9.7</td>
<td>9.9</td>
<td>10.1</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>Maturity phase</td>
<td>10.2</td>
<td>10.2</td>
<td>10.9</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>Full lifespan</td>
<td>37.3</td>
<td>38.2</td>
<td>38.8</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>Priming with one percent pungam leaf extract (P_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seedling phase</td>
<td>9.3</td>
<td>9.4</td>
<td>8.7</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Vegetative phase</td>
<td>8.3</td>
<td>8.7</td>
<td>9.0</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Reproductive phase</td>
<td>9.9</td>
<td>10.1</td>
<td>10.1</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Maturity phase</td>
<td>10.0</td>
<td>10.2</td>
<td>10.9</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Full lifespan</td>
<td>37.5</td>
<td>38.4</td>
<td>38.7</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td>Priming with five per cent cow dung slurry(P_5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seedling phase</td>
<td>9.4</td>
<td>9.4</td>
<td>8.8</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Vegetative phase</td>
<td>8.2</td>
<td>8.7</td>
<td>9.0</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Reproductive phase</td>
<td>9.8</td>
<td>10.1</td>
<td>10.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Maturity phase</td>
<td>10.3</td>
<td>10.4</td>
<td>11.1</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Full lifespan</td>
<td>37.7</td>
<td>38.6</td>
<td>39.0</td>
<td>38.7</td>
<td></td>
</tr>
</tbody>
</table>

S_1: 6th February, S_2: 13th February, S_3: 20th February

4. CONCLUSION

From the study resulted that during Navarai season 6th February sowing window was offered the higher productivity and an opportunity to mitigate the untoward incidence of drought under aerobic rice cultivation in the coastal deltaic areas of Karaikal.

ACKNOWLEDGEMENT

The authors wish to acknowledge Department of Agronomy and Department of Seed Science and Technology, Pandit Jawaharlal Nehru College of Agriculture and Research Institute for providing excellent facilities to take up the study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Sreelakshmi V. Studies on agronomic practices to mitigate climate change in aerobic rice during Kharif season at Karaikal. (MSc. Agric. Thesis, Department of Agronomy, Tamil Nadu Agricultural University, Tamil Nadu); 2016.
4. Saito K, Linquist B, Atlin GN. Response of traditional and improved rice cultivars to N...
9. Bhuvanaswari P. Studies on agronomic practices to mitigate crop stress in aerobic rice at coastal deltaic areas of Karaikal, (M. Sc. Agric Thesis, Department of Agronomy, Tamil Nadu Agricultural University, Tamil Nadu); 2015.
12. Haridassan A. Studies on rice weather relationship to identify suitable genotype and planting window for Kharif season in Karaikal region, (MSc. Agric. Thesis, Department of Agronomy, Tamil Nadu Agricultural University, Tamil Nadu); 2006.
13. Ramanadane T. Studies on ecological influence and post-harvest seed management techniques on seed quality in hybrid rice, PhD Thesis, (Tamil Nadu Agricultural University, Tamil Nadu, India); 2003.

© 2020 Pazhanisamy et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/55494