Single Site Extreme Wave Analysis in the Pacific Ocean Comparing Stationary and Non-stationary GEV Models

F. Calderón-Vega¹,²*, C. Mösso²,³, A. D. García-Soto¹ and E. Delgadillo-Ruiz¹

¹Department of Civil Engineering, Universidad de Guanajuato, Juárez 77, Zona Centro, P.C. 36000 Guanajuato, Gto, Mexico.
²Laboratori d’Enginyeria Marítima, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Mòdul D1, Campus Nord, 08034, Barcelona, Spain.
³Centre Internacional d’Investigació dels Recursos Costaners, Jordi Girona 1-3, Mòdul D1, Campus Nord, 08034, Barcelona, Spain.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors designed the study, performed the statistical analysis, wrote the protocol, wrote the first draft of the manuscript, managed the analyses of the study and managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2019/v32i630038

Received 25 October 2018
Accepted 09 February 2019
Published 23 February 2019

ABSTRACT

The adequate knowledge of the weather behavior is very important for the design and management of socioeconomical, environmental and sustainability human interests in the coasts and oceans. In the present study an extreme value analysis of maximum significant waves recorded at a buoy located in the Pacific Ocean was carried out. The analysis was carried out from two perspectives, by considering a Generalized Extreme Value (GEV) model with stationary distribution (i.e., the time variations are not accounted for), and by considering a non-stationary GEV model, which incorporates the monthly seasonality of maximum observed values in time increments; the
maximum significant wave behavior was parameterized using harmonic functions for the distribution measures. Both approaches were compared for a single buoy. In the study a seasonality effect was found, which was also present at the Gulf of Mexico in previous studies, and which cannot be captured by a stationary model.

Keywords: GEV model; stationary; non-stationary; seasonality; projections.

1. INTRODUCTION

The use of the extreme value theory has been widely extended in recent years to meteo-oceanographic variables. In a recent study, [1] used the Gumbel probability density function (PDF) together with maximum annual values to assess the extreme maximum annual significant wave height for projection purposes. [2] used non-stationary GEV models for investigating period trends in extreme waves. [3] developed design values for significant wave height accounting for direction and seasonality by means of a non-stationary model. [4] compared the behavior of tropical cyclone data (extreme values), obtained through simulations, versus those recorded at buoys located in the Meridional Chinese Sea and the Oriental Chinese Sea, and proposed an approach combining the set of data. [5] used peak over threshold (POT) methods and block maxima for the assessment of return values for significant wave heights.

The Extreme value theory encompass methods and techniques to quantify and model the stochastic behavior, in terms of magnitude as well as in terms of frequency, of extreme events. [6,7] already mentioned the size effect on the materials strength, and in 1922 [8] introduced the concept of extreme values, while [9] studied the maximum and minimum distributions for a sample, problem which also [10] approached for normal samples. A keystone in the development of extreme value analysis was given by [11] and [12], who demonstrated that only three limiting parametric distribution families for maximum (and their minimum counterparts) are possible. [13], [14,15,16] and [17], worked on the problem of maximum and minimum distributions for a sample and found the generalized proof for [18] on the extremes type theorem. Gumbel [19] published the book "Statistics of extremes", one of the greatest contributions in the history of extreme value statistics. Later on, [20] and [21] incorporated the dependency and related results for the multivariate case. [22] and [23] described the weather variability in the geophysical variables of events.

More recently [24] referred to the Bayesian inference for modelling extreme values of characteristic marine environments and for designing maritime structures. Calderón-Vega et al. [25] investigated the seasonality of extreme waves in the Gulf of Mexico; it was found that, for the Gulf of Mexico, there is indeed seasonality effects on the extreme values; moreover, two clear peaks were found which are associated to hurricanes and cold fronts in distinctives seasons of the year. The study was carried out for several buoy sites in the Gulf of Mexico, but it was not performed for buoys in the Pacific. The use of stationary models is very common when carrying out analyses of extremes, however, as already mentioned and found in a previous study [25], seasonality may play a role in the probabilistic characterization of meteo-oceanographic variables, and it may also have an impact on design, management and reliability-oriented tasks; furthermore, since meteo-oceanographic variables are directly linked to climate change detection, vulnerability, future projection and sustainability of coasts and coastal infrastructure [26,27], an impact due to seasonality effects would be expected on all these issues for extreme waves. Although not pursued in the present study, the relation between extreme wave heights and sustainability (using stationary versus non-stationary models) could be explored in future projects; the present study can be considered as a first step in that direction.

The main objective of this study is to select a single buoy site to compare stationary versus non-stationary GEV models for significant wave height projections and to inspect possible seasonality effects in the Pacific Coast for this meteo-oceanographic variable.

2. DATA USED

Significant wave data recorded at 51004 buoy located at the Pacific Ocean are analyzed; the buoy is operated by the National Data Buoy Center (NDBC, www.ndbc.noaa.gov).
Fig. 1 shows the buoy location and general information. The 51004 buoy geographical coordinate are 17.602N 152.395W, and is located to the south of the Hawaii islands. It comprises a time window from 1984 to 2017 including all years, except 2010. The significant wave height (Hs) is obtained as the mean of the highest third for wave heights during a given sample time period, which is 20 minutes for the used NDBC data. The NDBC Hs is preliminarily processed for uniformizing the data series, so that they can be employed in the probabilistic model.

3. RESULTS AND DISCUSSION

3.1 Preliminary Analysis

A preliminary analysis of the data is carried out to broadly inspect the behavior of the variable under study at the selected site. In Fig. 2a (upper part) a main wave incidence to the NEE is observed. The maximum recorded Hs is equal to 10.60 m; see Fig. 2b (lower part). The most frequently observed significant wave height fluctuates around 2 m.

![Fig. 1. NOAA 51004 buoy](image1)

![Fig. 2. Basic statistics of the buoy under study (a) wave rose and, (b) time series data](image2)
3.2 Extreme Value Model

3.1.1 GEV model

The governing equations for the extreme value theory (EVT) can be found in [28] and they are used to establish feasible limit distributions for maxima. The only non-degenerate family of distributions obtained from EVT are the well-known Weibull, Gumbel and Fréchet families for maxima, and they are given below [28].

Maximal Weibull or Reversed Weibull

\[
H(x) = \begin{cases}
\exp \left[-\left(\frac{x-\lambda}{\delta} \right)^{\beta} \right], & \text{if } x \leq \lambda, \beta > 0 \\
1, & \text{Otherwise}
\end{cases} \]

(1)

Gumbel or Maximal Gumbel

\[
H(x) = \exp \left[-\exp \left(\frac{x-\lambda}{\delta} \right) \right], \quad -\infty < x < \infty
\]

(2)

Fréchet or Maximal Fréchet

\[
H(x) = \begin{cases}
0, & \text{if } x < \lambda, \\
\exp \left[-\left(\frac{\delta}{x-\lambda} \right)^{\beta} \right], & \text{if } x \leq \lambda, \beta > 0
\end{cases}
\]

(3)

where \(\beta, \delta\) and \(\lambda\) are distributions parameters.

The used model is the Generalized Extreme Value (GEV) distribution e.g., [22,28], which encompass, in a single mathematical expression, the three well-known families of extreme distributions, i.e., the Gumbel, Weibull and Frechet Distributions given above, and is given by:

\[
G(x) = \exp \left[-\left[1 + \xi \left(\frac{x-\mu}{\psi} \right) \right]^{\frac{1}{\xi}} \right] \rightarrow \xi \neq 0
\]

(4)

\[
g(x) = \frac{1}{\psi} = 1 + \xi \left(\frac{x-\mu}{\psi} \right)^{-1+1/\xi} \exp \left[- \left[1 + \xi x - \psi + 1 \right] \right] \text{if } \xi \neq 0
\]

(5)

where \(-\infty < \mu < \infty\) is the location parameter, \(\psi > 0\) is the scale parameter and \(\xi\) the shape parameter.

The location parameter represents the mean values of the random variable, \(x\), and defines the value with a non-exceedance probability \(\exp(-1)\).

To develop the model, the lack of data should be accounted for, since this issue affects the parameters estimation stability for the extreme value distribution. Therefore, since it is known that data for some years may be absent (e.g., due to buoys maintenance), a minimum of data per time unit is considered to define the maximum values, by adopting the criterion of rejecting maximum monthly events with data blank spaces of up to 40% e.g. [25].

3.1.2 Non-stationary GEV model

For modelling \(Hs\) the GEV is used for block maxima of a time interval. In this study, the monthly maximum values are used for the extreme value samples. Note that throughout this study, the methodology used and referenced by [25] is followed.

The seasonality is defined as the cyclic changes during the year. Usually, this cycle is linked to established climatic patrons; consequently, it repeats itself for many years and behaves in a sinusoidal way, as shown in Fig. 3. In Fig. 3 the marine weather variation is exhibited; in the winter the wave heights are larger than in the spring.

For the assessment of time-dependency an extension of traditional stationary models in extreme value theory is used. In this case the successive monthly maxima are considered as independent random variables, disregarding the need of the homogeneity hypothesis for the consecutive months, because they do not have identical distributions. It is assumed that the maximum monthly value \(Z_t\) of the observed \(Hs\) in month \(t\) follows a GEV distribution, where the location \(\mu(t)>0\), scale \(\psi(t)>0\) and shape \(\xi(t)\) parameters are time-dependent.
The cumulative distribution function (CDF) of Z_i is given by

$$F_i(z) = \begin{cases} \exp \left\{ - \left[1 + \xi(z) \left(\frac{z - \mu(t)}{\psi(t)} \right) \right]^{\frac{1}{\xi}} \right\} \\ \exp \left\{ - \exp \left\{ - \left(\frac{z - \mu(t)}{\psi(t)} \right) \right\} \right\} \end{cases}$$

The non-stationarity of the models is introduced in the GEV parameters as:

$$\theta = \begin{cases}
\mu(t) = \beta_0 + \beta_1 \cos(2\pi t) + \beta_3 \sin(2\pi t) \\
+ \beta_2 \cos(4\pi t) + \beta_4 \sin(4\pi t) \\
\psi(t) = \alpha_0 + \alpha_1 \cos(2\pi t) + \alpha_2 \sin(2\pi t) \\
+ \alpha_3 \cos(4\pi t) + \alpha_4 \sin(4\pi t) \\
\xi(t) = \gamma_0 + \gamma_1 \cos(2\pi t) + \gamma_2 \sin(2\pi t) \\
+ \gamma_3 \cos(4\pi t) + \gamma_4 \sin(4\pi t) \end{cases}$$

(6)

Where, $\psi(t > 0)$, β_0, α_0 y γ_0 are mean values, β_1, α_1, y γ_1 (for $i=1,2$) are the harmonic amplitudes; β_2, α_2, y γ_2 (for $i=3,4$) are the subharmonic amplitudes and t is in years.

In Fig. 4 the results from the variability analysis within a year of the maximum-likelihood estimators for the location, μ, scale, ψ, and shape, ξ, parameters along the year are depicted. The circles represent the values computed with the stationary GEV model, month to month, and the line is the resulting function from the regression fitting with two harmonics.

The location parameter exhibits maximum values in winter season, which indicates, in general terms, larger wave heights in November, December, January and February.

Fig. 3. Seasonality of monthly maxima

Fig. 4. Estimators for distribution parameters month to month by regression fitting
3.1.3 Non-stationary model fitting

To estimate the regression coefficients and the probability distribution parameters, the method of maximum likelihood (MML) is employed.

This method is based in the search for point estimators \(\hat{\theta} \) for the parameters of a \(X \) function, so that the probability of observing the sample data \(\{x_1, \ldots, x_n\} \) is maximum. The likelihood function \(L(x; \theta) \) is the joint density function associated to all initial extreme values, from a previously selected distribution and, in general terms, is given by

\[
L(x; \theta) = f(x_1, \ldots, x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)
\]

(8)

The location \(\mu(t)>0 \), scale \(\psi(t)>0 \) and shape \(\xi(t) \) parameters are expressed in terms of harmonic functions, whose amplitudes are regression parameters to be mathematically estimated [29].

For our study the specific maximum likelihood function is given by

\[
\ell(\theta, \lambda) = \sum_{i=1}^{n} \log \varphi(t_i) \left[1 + \frac{1}{\psi \left(\frac{\mu}{\psi} \right)} \left(\frac{\mu(t)}{\psi(t)} \right)^{-\psi(t)} \right] - \log \left[\frac{1}{\psi(t)} \varphi(t) \right]^{\psi(t)}
\]

(9)

3.1.4 Automatic selection, confidence intervals and return period values

To find the best model, a selective search methodology named Stepwise is carried out; the Stepwise is in turn based on combining two approaches denoted “Forward Selection” and “Backward Elimination”. Any probabilistic model should ideally incorporate some measure of uncertainty to evaluate the randomness or error from the selected model; for the present study standard errors and confidence intervals are used to deal with the uncertainty. Finally, with regard to the values associated to a return period of interest, the following equations are adopted,

\[
X_q(t; \theta) = X_{\mu(t)}, \psi(t), \xi(t) = \left\{ \begin{array}{ll}
\frac{\mu(t) - \psi(0)}{\xi(t)} \left[-\log(1 - q)^{-\frac{1}{\psi(t)}} \right] & \text{if } \xi(t) > 0 \\
\mu(t) - \psi(t) \log \left[-\log(1 - q) \right] & \text{if } \xi(t) = 0
\end{array} \right.
\]

(10)

where \(q \) is the exceedance probability defined from \(G_q(x) = 1-q \) and the estimated quantile, and \(X_q(t; \theta) \) is the time-dependent value associated to the return period \(R=1/q \).

A more detailed description can be found in the study by [25] and the references cited in that paper.

4. DISCUSSION

4.1 Stationary Model

For the stationary model the location, scale and shape parameters, which are invariant in time, are obtained. Table 1 lists the computed values of the distribution parameters, as well as the maximum recorded significant wave height, \(H_{\text{max}} \), and the projected value for \(H_s \) associated to a return period of 30 years.

Table 1. Parameters for the stationary model, \(H_{\text{max}} \) and \(H_s \) and \(Tr=30 \) years

<table>
<thead>
<tr>
<th>(H_{\text{max}}) (m)</th>
<th>10.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_s) (m) for (Tr=30) yr</td>
<td>5.60</td>
</tr>
<tr>
<td>(\mu)</td>
<td>360.34</td>
</tr>
<tr>
<td>(\psi)</td>
<td>58.59</td>
</tr>
<tr>
<td>(\xi)</td>
<td>1x10^{-4}</td>
</tr>
</tbody>
</table>

From the values reported in Table 1, it can be inferred that the stationary model is dominated by a Frechet type (heavy tail) distribution behavior. Note that in Table 1, \(H_{\text{max}} = 10.60 \) m is an atypical value recorded on 23 July, 1986 during hurricane Estelle (http://www.prh.noaa.gov/cphc/summaries/1986.php); it can be clearly observed in Fig. 5.

In Fig. 5 the instantaneous quantiles for a return period of 30 years for the location and scale parameters are shown, the depiction corresponds to the stationary GEV over the monthly extreme values distributed month to month along the year. In Fig. 5, dots indicate the monthly maximum \(H_s \); the red line represents the time-dependent quantile associated to a 30-year return period; the black, green and yellow lines depict the location, scale and shape parameters, respectively.

In addition to the previous figure, QQ and probability Plots are shown in Fig. 6, where it can be observed that for buoy 51004 the probability paper implies an adequate fit for the data; nonetheless, the QQ plot underestimates the quantiles of the extreme values.
Fig. 5. Estimated quantile values for $T_r=30$ years, monthly maximums and location, scale and shape parameters

Fig. 6. (a) Probability and (b) quantile plots for the stationary GEV model

Fig. 7. Fitting for the monthly maximum for the non-stationary GEV model
4.2 Non Stationary Model

For the non-stationary model, it was found that values for the annual and semiannual cycles for the location and scale parameters are present, as well as the annual cycle for the shape parameter. The zero positive gamma value indicates that data exhibit a heavy-tailed Frechet type distribution, which is expected, if it is considered that the buoy maximum value is related to a hurricane activity, which is quite large as compared to the regular maximum recorded waves. Note that an emphasis on the tail behavior is useful for engineering purposes, and the use of the GEV model is preferred as an adequate and objective criterion for the extremes [30]. Using the computed numerical values in the non-stationary GEV distribution equations, the best fitted parameters for the distribution are obtained. In Fig. 7 the red line shows the time-dependent quantile associated to a 30-year return period; the black line depicts the location parameter, the green line corresponds to the scale parameter and the yellow line corresponds to the shape parameter. The monthly maxima for Hs are shown by the black dots. An adequate fit for the studied case can be observed in Fig. 7. Note that the maximum Hs associated to hurricane Estelle (mentioned previously), does not significantly deviate the trend of the values associated to a 30-year return period. Nevertheless, it may lead to a smoother curve as compared with the trend for buoys in the Gulf of Mexico [6], where two peaks associated to cold fronts are hurricanes are shown; Fig. 7 also seems to show that kind of behavior, if the black dots (monthly maxima) are observed for February and September, but those peaks may be somehow attenuated due to the atypical maximum Hs in July. Nevertheless, it is noteworthy that a seasonality effect does exists also in the Pacific Coast and, although the results in the present study are limited to one site only, it could be preliminarily concluded that seasonal trends are existent in both, the Gulf of Mexico and the Pacific Ocean. Consequently,
further studies to compare the trends for more buoys in the Pacific are strongly recommended.

To represent the adequacy of the fitting, the empirical probabilities obtained with the model and with the quantiles are shown in Fig. 8; the probability associated to the Gumbel distribution from the $W(t)$ statistic is shown.

4.3 Comparison of Stationary Versus Non-stationary GEV Models

In this section a comparison of the two employed models for the extreme value analysis is carried out. The basic stationary GEV model and the non-stationary GEV model, which, unlike the former, captures seasonal variation for monthly maxima data series, are contrasted.

In Fig. 9 the most adequate fitting of the non-stationary GEV model to the data can be clearly observed, since the curve follows the seasonal trends; conversely, it can be seen that the stationary GEV model is unable to capture the seasonality of the significant wave heights. Fig. 10 shows also the best fitted results month-to-month, but for a 100-year return period. In Fig. 10 the depicted quantile for a 100-year return period shows that the non-stationary model includes the extreme values and represents more adequately the seasonality of the used data (red line), as compared to the stationary model (green line), except by the extreme value in July (see black dots for monthly H_s).

Fig. 11 shows 95% confidence intervals, where it can be observed that the bounds are more reduced for the non-stationary model and better correlated to the month-to-month data.

Results in Figs. 10 and 11 show the advantage of using the non-stationary GEV model, since the computed seasonal trend tend to capture the maximum values and fits better the data series; the expected wave heights for $T_R=100$ years computed for the non-stationary case are larger than those computed with the stationary one for the winter season, and the opposite occurs for the summer season; this is important, since an impact in design, management, reliability related tasks and sustainability related issues is expected. The reason of the smaller values with the stationary GEV model for some months, is that it does not effectively account for scarce and extreme wave heights associated to hurricanes. In contrast, the non-stationary GEV model can capture these extreme values (also included in the integrated quantile) by means of the sinusoidal trend.

A final Figure in this study, Fig. 12, shows that the best behavior (in terms of representing the selected meteo-oceanographic variable) for the used empirical data is obtained with the non-stationary GEV distribution, at least for selected buoy, as observed by the goodness-of-fit for both models in Fig. 12 (left side column for the stationary model and right side column for the non-stationary model, respectively). It is pointed out once more, that this is due to the fact that the non-stationary model try to capture the majority of extreme values through a sinusoidal computing scheme; also, the existent extreme wave values caused by hurricanes, which significantly alter the seasonal periodic variation, are more adequately incorporated by the non-stationary GEV model in general terms; moreover, the uncertainty induced by hurricane activity, is compensated by the non-stationary GEV model for the monthly data series.

![Fig. 10. Quantiles comparison for 100-year return period and measured H_s](image-url)
5. CONCLUSION

In this study, a methodology for fitting empirical meteo-oceanographic data to extreme value models for projections purposes is presented. The selected meteo-oceanographic variable is significant wave height. The GEV model is used from two perspectives: Stationarity and non-stationarity. A comparison is carried out between the two approaches for a single site. For the non-stationary GEV model, the seasonality is modeled by means of sinusoidal curves for a single buoy in the Pacific Ocean.

The non-stationary GEV model predicts adequately the monthly maximum significant wave height.
wave heights and reduce the uncertainty of the estimated quantiles; it also projects in a better way the wave heights associated to given return periods, since the methodology includes not only the point maxima, but also the peripheric values along the year. From the comparison of the stationary and non-stationary GEV models, it is concluded that the later leads to a better representation of the meteo-oceanographic variable, and also leads to larger projected return period values than the former for winter season. This is important, since implications in design of maritime structures, managements tasks, reliability and risk assessments, as well as sustainability related issues, are expected depending on the selected model.

It is also concluded that, at least for the selected buoy and its recorded data, a seasonality trend is found, as it was the case for the Gulf of Mexico [6], although some differences are found in the trends. Future studies for more buoys and wider regions are desirable, to characterized extreme wave activity, aimed at improving the design and management of coasts and ports by including seasonality. It is suggested to investigate the impact of selecting different models (i.e., stationary versus non-stationary models for extreme waves) in the sustainability of coasts and coast infrastructure. Further research for other meteo-oceanographic variables is also recommended.

ACKNOWLEDGMENTS

The financial support from the Erasmus Mundus Coastal and Marine Engineering and Management (CoMEM) programme and from Universidad de Guanajuato is gratefully acknowledged. We are thankful for the comments, suggestions and constructive criticism from two anonymous reviewers.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

2. Vanem E. Non-stationary extreme value models to account for trends and shifts in the extreme wave climate due to climate change. Appl Ocean Res. 2015;52:201-211. DOI: 10.1016/j.apor.2015.06.010
10. Tippett LHC. On the extreme individuals and the range of samples taken from a normal population, Biometrika. 1925;17:364-387 Available:https://doi.org/10.1093/biomet/17.3.364
13. De Finetti B, Obry S. L'optimum nella misura del riscatto, Atti del II Congresso

DOI: 10.1016/j.oceaneng.2013.01.004
Sanchez-arcilla A, Sierra JP, Mösso C, Gracia V, Garcia M. Progress on climate change detection and projections over Spain since the findings of the IPCC AR5. International Symposium Climatees. 2015; 146.

© 2019 Calderón-Vega et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/47420